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Abstract
The study of fault diagnosis and classification has gained tremendous attention in various aspects ofmodern industry. However,
the performance of traditional fault diagnosis technique solely depends on handcrafted features based on expert knowledge
which is difficult to pre-design and has failed in several applications. Deep learning (DL) has achieved remarkable performance
in hierarchical feature extraction and learning distinctive feature of dataset from related distribution. However, the challenge
associated with DL models is that max-pooling operation usually leads to loss of spatial details during high-level feature
extraction. Another concern is the low quality characteristics of 2D time-frequency image which is mostly caused by the
presence of noise and poor resolution. This paper proposes a modified wavelet convolutional capsule network with modified
enhanced super resolution generative adversarial network plus for fault diagnosis and classification. It uses continuous wavelet
transform to convert raw data signals to 2D time-frequency images and applies super resolution generative adversarial
technique to enhance the quality of the time-frequency images and finally, the convolutional capsule network learns the
extracted high-level features without loss of spatial details for the diagnosis and classification of faults. We validated our
proposed model on the famous motor bearing dataset from the Case Western Reserve University. The experimental results
show that our proposed fault diagnostic model obtains higher diagnosis accuracy of 99.84% outweighing most traditional
deep learning models including state-of-the-art methods.

Keywords Capsule network · CNN · Fault diagnosis · GAN · Wavelet · Super resolution
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Introduction

Inmodern industry, one of the things that play a crucial role is
fault diagnosis [1].Data-driven fault diagnosis being a typical
type of fault diagnosis has attracted much attention in recent
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years [2]. To carry out the extraction of the underlying knowl-
edge concerning system variables, historical data of large
volume is used especially for the complicated systems where
it looks hard to establish unambiguous models or symptoms
of signal [3]. The development of smart manufacturing has
brought ease to the process of data collection [4] which does
not only bring new perspective to the industry but has also
brought some challenges [5]. Therefore, it becomes crucial to
discover an effective data-driven method for fault diagnosis
[6]. Traditional machine learning (ML) methods utilize pre-
designed handcrafted features and these features contribute
to the best possible (upper bound) prediction accuracy [7]. In
2006,DeepLearning (DL) became the center of attraction for
most researchers in the field of machine learning [8]. DL has
the ability to automatically extract features of rawdata in hier-
archical representation [9,10]. This advantage enables theDL
to avoid the errors encountered in the handcrafted features
designed by domain experts and has consequently shown
a remarkable prospect on the diagnosis of faults [11,12].
Although traditionalmachine learningmethods performwell
under the assumption that both the training and the testing
data are expected to be drawn from exactly the same dis-
tribution. When drawn from differing distributions, then the
performances would drop significantly. In addition to that,
this assumption has never recorded success in many applica-
tions.

DL methods also encounter the same bottleneck men-
tioned above. To solve this challenge, awell-known approach
called Transfer Learning (TL) method is utilized to per-
form learning task on both the training and testing dataset
from a distribution that is related. TL approach offers bet-
ter adaptability in extracting high-level features compared to
shallow architectures and has recorded tremendous progress
in many applications [13]. However, the challenges associ-
ated with TL models is that max-pooling operation usually
leads to loss of spatial details duringhigh-level feature extrac-
tion. According to Zellinger et al. [14] who suggested a
unique strategy for unsupervised domain-adaptation for neu-
ral networks that depends on the regularization of the metric-
based learning procedure. The authors further explained
that by decreasing the suggested Central Moment Discrep-
ancy (CMD) metric, the regularization tries to maximize the
resemblance of domain-specific activation distributions. The
authors also stated that the CMD addresses difficulties of
instability that occur when using integral probability metrics
based on polynomial function spaces. More so, the authors
explained that in dual space, the metric can be interpreted
as the sum of the differences between higher order central
moments of the associated activation distributions [14]. Stud-
ies have shown that deep learning models combined with
wavelet transform significantly increase the overall perfor-
mance of the network in classification task compared to the
traditional stand alone deep learning models [15]–[17].

This paper proposes a modified wavelet convolutional
capsule network with modified enhanced super resolution
generative adversarial network plus for fault diagnosis and
classification. It uses continuous wavelet transform to con-
vert raw data signals to 2D RGB images (scalograms) and
applies super resolution generative adversarial technique to
enhance the quality of the scalograms and finally, the con-
volutional capsule network learns the extracted high-level
features without loss of spatial details for the diagnosis
and classification of faults. We conducted several experi-
ments to examine the diagnosis performance of our proposed
MWCCN-MESRGAN+ model. From the results obtained,
not only does MWCCN-MESRGAN+ has a promising
potential in fault diagnosis, it also outweighs several TLmod-
els and fault diagnosis methods. The remaining part of this
paper is structured as follows. The related works is presented
in Sect. 2. Methodology and detailed discussion of the pro-
posed framework are presented in Sect. 3. Section 4 presents
the several experiments conducted. Section 5 presents the
evaluation of the proposed framework and finally, the con-
clusion of this paper is given in Sect. 5.

Related works

Fault diagnosis abates the risk of unforeseen breakdown
and ensures the safety as well as the reliability of indus-
trial systems. Generally, the methods of fault diagnosis can
be categorized into four domain subjects; signal domain,
model domain, hybrid/active domain, andknowledgedomain
methods [18]. The knowledge domain method is data-driven
technique which is better used for systems that are too com-
plicated and difficult to obtain specific system framework or
symptoms of signal [18]. Machine learning is a well-known
analytical technique in data-driven fault diagnosis such as
artificial neural network (ANN), expert system, Support Vec-
tor Machine (SVM) as well as fuzzy logic.

The first data-driven fault diagnosis that became famous
was developed in the 1980s with the use of expert systems
[19]. Thismethod utilizes a technique that requires the expert
to learn a set of rules from previous experiences. The authors
in [20] suggested an extended version of neural network for
fault diagnosis of internal combustion engines. A study was
suggested in [21] to investigate the merits of SVM method
for fault diagnosis and to monitor the recent progress. The
authors in [22] proposed an intelligent framework which is
based on a fuzzy genetic algorithm. This method was applied
to automatically detect failures in aircraft.

The authors in [23] investigated the possible applications
of DL to machine condition monitoring. Recurrent neural
networks and dynamic Bayesian modeling approach was
suggested by the authors in [24] to detect faults in induc-
tion motors. The investigation of an stacked Auto-Encoder
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(SAE) for the classification of induction motor fault was pro-
posed by the authors in [25]. Two-layer unsupervised neural
network with sparse filtering technique was proposed in [26]
for fault diagnosis. The authors in [27] applied the stacked
de-noising auto-encoder (AE) to fault diagnosis in rotary
machinery. The authors in [28] suggested an improved deep
belief network (DBN) for fault diagnosis in rolling bearing.
A deep neural network with auto-encoder (AE) was investi-
gated by the authors in [29] for smart fault diagnosis.

Despite the huge achievement of machine learning meth-
ods,it still fails in many applications due to its assumption
that the data distributions of the train and the test are the same
[30]. The authors in [31] presented a study to analyze differ-
ent methods while the work of [32] presented some of the
applications of TL. A method of transfer component anal-
ysis was proposed by the authors in [33] to achieve feature
transformation with the aim of discovering common latent
features with similar margin of distribution while keeping
the intrinsic structure of the input data.

A method of handling the heterogeneous features of both
videos and images by transferring the SVM was proposed
in [34]. A method of unsupervised Stacked de-noising AE
was proposed in [35] to transform the input space to find
consistent latent feature space. A study on transfer learning
by reusing stacked de-noising AE was investigated by the
authors in [36].The authors in [37] utilized domain adap-
tion with neural network for fault diagnosis. It is worth
mentioning that rolling bearing fault data are raw signals
(time-series) data that need to be converted to 2D time-
frequency images by means of continuous wavelet transform
(CWT). These time-frequency images are absolute value of
CWTcoefficient characterizedwith lowquality. However, all
the methods mentioned above contributed remarkably to the
study of fault diagnosis but none of the methods addressed
the effect of low quality 2D time-frequency scalogram on the
performance of fault diagnosis. The method proposed in this
research is designed to solve the problem of low quality 2D
time-frequency scalograms with the aim of obtaining high
performance on fault diagnosis.

Methodology

This section will introduce the dataset utilized in this paper,
the pre-processing of the fault dataset, themodified enhanced
super resolution generative adversarial network plus, fol-
lowed by the wavelet convolution capsule network, and the
time-frequency scalogram construction. Finally, the experi-
mental setup and details conclude this section.

Dataset

In this study, we collected raw signals of fault dataset from
Case Western Reserve University [38] which consists of 10
health conditionswith 1024 sample points each.Out of the 10
conditions, only 1 condition belongs to the normal labelwhile
the other 9 conditions are classified as fault condition with
different damage points, fault diameters and load conditions.
The raw signals of the 10 health conditions are sampled at
the frequency of 12kHz. For the purpose of our study, we
split the dataset into train, validation and test.

Pre-processing of fault dataset

Dataset of raw fault signals are collected from a well-known
bearing data repository of the Case Western Reserve Uni-
versity [38]. Since our proposed model requires the input
data to be in image format, we converted the raw signals into
time-frequency scalograms (images) using continueswavelet
transform (CWT). However, the time-frequency scalograms
are grayscale with 1 channel, therefore, it is important to
convert them to 3 channel format of RGB. Finally, the
input image is normalized and reshaped to a dimension of
224×224×3 to match the input size of our proposed model.
The dataset is subdivided into training, validation and test set.

Modified enhanced super resolution GAN Plus
(MESRGAN+)

In this study, our aim is to enhance the low quality of scalo-
gram (2D images) into a super-resolution before passing
them through the wavelet convolutional capsule network for
bearing fault diagnosis and classification. We will present
the proposed modified enhanced super resolution generative
adversarial network plus (MESRGAN+) architecture and its
structural improvement for achieving a balance in percep-
tual quality and PSNR in this section. Hence, we will briefly
highlight the transition of SRGAN to MESRGAN+.

Transition of super resolution by GAN
SRGAN [39] utilizes basic blocks of deep residual net-

work to recover image-realistic details in which batch nor-
malization(BN) is followed after each convolutional layer as
depicted in Fig. 1. The transition from SRGAN to ESRGAN
[40] is based on two modifications; the first modification
is the removal of all BN in the generator structure and the
second modification involves the replacement of the original
basic blockwithResidual-in -ResidualDenseBlock (RRDB)
as shown in Fig. 1. Finally, the transition fromESRGAN [40]
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Fig. 1 Detailed structure of our proposed modified enhanced super resolution generative adversarial network plus (MESRGAN+)

to ESRGAN+ [41] is based on introducing additional level of
residual learning at every two layers inside the dense block
as illustrated in Fig. 1 without changing the convolutional
structure.

Architecture of the proposed MESRGAN+
In our proposed super resolution architecture, the overall

structural configuration of the Residual-in-Residual Dense
Block (RRDB) in ESRGAN+ is kept the same as shown
in Fig. 1. We made few modifications to the ESRGAN+
network in the generator structure by expanding the convo-
lutional layers with additional two convolutional layers and
two ReLU activation function. Normally, the direct mapping
of the high-dimensional LR features to HR feature vectors
ultimately results to high computational complexity and we
know that the dimension of the LR feature is normally very

huge. To address this bottleneck, we utilize a 1× 1 convolu-
tional layer as the second layer to reduce the computational
cost by shrinking the LR dimensional features thereby main-
taining the same kernel size of 64 after the first layer. To
maintain consistency and the performance of ESRGAN+,
we utilized 3× 3 filter size and kernel size of 64 for the third
and fourth convolutional layers.

To produce the high-resolution images from the scale-
adaptive module, the scale factor is increased to 4. This
image’s network generator produces vk+1 = Gk(v

k). Fea-
ture map is extracted to calculate the perceptual loss before
being passed to thefinal activation function. Pixel-wise loss is
measured, and the created image is forwarded to the discrim-
inator network to differentiate between the created image
vk+1 and the actual image v̂k+1. This actual image v̂k+1 is
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fed to the discriminator network for training, which results
in the same super-resolution image vk+1. The generator net-
work could generate new images that look like the real image.
When training begins, the generator produces obviously fake
data, and the discriminator quickly learns to tell that it’s fake.
As training progresses, the generator gets closer to producing
output that can fool the discriminator. Finally, if the genera-
tor training goes well, the discriminator gets worse at telling
the difference between real and fake. It starts to classify fake
data as real, and its accuracy decreases. During the discrimi-
nator training, the discriminator classifies both real and fake
image from the generator. Finally, if the generator training
goes well, the discriminator gets worse to distinguish real
and fake image which simply means that this entire process
was only completedwhen the discriminator network could no
longer tell the difference between real and fabricated images.
At this point, the discriminator loss penalizes the discrim-
inator for misclassifying a real instance as fake or a fake
instance as real.Therefore, if the process is incomplete, the
generator loss penalizes the generator for failing to fool the
discriminator. At this point, the discriminator can still tell the
difference between the fake and original image. We train the
generator function Gk to approximate the HR of the next LR
image v̂k+1 which LR input can represent.The total loss of
the super-resolution network is given in (1) as;

�Totalloss =�Gen
(
�Perceptualloss + μ�Ra

G + ηL1
)

+ �Ra
Dis

(1)

As (1) is evaluated, �Gen is the generator loss and
�Perceptualloss is the perceptual loss.�Ra

G is called the adver-
sarial loss which is the loss of a relativistic generator, L1 is
the content loss and �Ra

Dis is the discriminator loss. μ and η

represent the coefficients to offset the losses.

Perceptual loss
Perceptual loss works to improve the texture and picture

accuracy of the generated images [42]. Euclidean distance is
used to compare the feature maps of the original image v̂k+1

and the generated image vk+1. According to the definition
of [42], the feature map was extracted before using the gen-
erator network’s final activation function. The extraction of
feature maps after activation function caused the model to be
inconsistent, directly impacting the model output.

When recapturing HR from LR, it provides close super-
vision between feature maps. The fact that scalograms are
not sufficiently HR is well understood, and this aspect boosts
model re-generationdramatically.Mapping featureαi j is got-
ten after j th-convolution and before the max-pooling layer.
The formality is measured as the distance between the func-
tion representations of the super-resolution image Gk

(
vk

)

and the real image v̂k+1. Formal calculation between feature
maps is given in (2).

�Perceptualloss =
Wi j∑

x=1

Hi j∑

y=1

(
αi j (v̂

k+1)xy

− αi j (Gk(v
k))xy

)2
(2)

Rather than encouraging the pixels of the output image
vk+1 to exactly match the pixels of the target image v̂k+1,
perceptual loss encourages them to have similar feature rep-
resentations as computed by the loss network.

Content loss
By manipulating the HR image vk+1 to be close to the

ground truth v̂k+1, the network improves the accuracy of
pixel-level by calculating the L1-normdistance between both
the ground truth and the recovered image. (3) calculates the
L1-norm distance between the SR image

(
Gk(v

k)
)
xy and the

ground truth (v̂k+1)xy are given in (3).

Ł1 =
W∑

x

H∑

y

∥∥
∥Gk(v

k)xy − (v̂k+1)xy)

∥∥
∥
1

(3)

Relativistic loss
The majority of the preliminary research focused on stan-

dard GAN. Meanwhile, we employ a rational discriminative
loss in our SR network, ensuring that HR photos are not styl-
ized or unrealistic. In (4), the classification of the images uses
the standard discriminator Dis in GAN.

Dis = σ
(
fd(v̂

k+1)
) → 1

Dis = σ
(
fd(v

k)
) → 0 (4)

Equation (4) reflects the regular GAN’s operation. Dis is the
discriminator’s output to classify whether the images are real
or artificial. The vector feature discriminator is represented
as fd(.). Additionally, the word “σ” stands for the sigmoid
function. Adversarial loss is a binary classifier that differ-
entiates between real data and generated data predicted by
the generative network. We use the relativistic GAN [36] to
distinguish between the real v̂k+1 and created data Gk(v

k)

with the distance computed in (5).

DRa
(
v̂k+1,Gk(v

k)
)

(5)

RGAN produces images with sharp edges when used in
a relativistic model and provides more graphic and detail
information than a typical GAN as presented in (6).

DRa(Real, Fake) = C(Real) − E
(
C(Fake)

) → 1

how realistic an image is compared to a fake one.

DRa(Fake, Real) = C(Fake) − E
(
C(Real)

) → 0

how fake an image is compared to a real one.

(6)
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Here, E(.) is the average of all real or fake data in the sam-
ple. This slight modification makes the model more efficient
than the standard discriminator network. The discriminator
network loss is given in (7).

�Ra
Dis = − Ev̂k+1[log(DRa(v̂

k+1,Gk(v
k))

)]
− EGk (v

k)[log
(
1 − DRa(Gk(v

k), (v̂k+1)
)] (7)

Despite this, (8) illustrates the adversarial loss for the
RGAN.

�Ra
G = − Ev̂k+1[log(1 − DRa(v̂

k+1,Gk(v
k))

)]
− EGk (v

k)[log
(
DRa(Gk(v

k), (v̂k+1)
)] (8)

The network is concurrently trained for both actual image
v̂k+1 and created imageGk(v

k) to minimize the failure of the
discriminator and generator networks. When the discrimina-
tor reaches the optimal value, the gradient gets close to zero
which provides little feedback to the generator, thereby slow-
ing or completely stopping the learning. At this level, custom
GAN does not learn how to create more realistic images.
In comparison, RGAN study both images and gradient are
dependent on both terms, i.e., v̂k+1 and Gk(v

k).

Modified wavelet convolutional capsule network
(MWCCN)

Presently, research literature have shown that CNN have
generated excellent results in the extraction of features for
classification problems. Conventional CNNs use scalar neu-
rons to express the likelihood of distinguishing features being
present, which severely restricts their performance. Figure 2

illustrates a fine-tuned VGG-19 model with discrete wavelet
transform (DWT) pooling used for the feature extraction of
scalograms. Traditional VGG-19 has 16 convolution layers
and 3 fully connected layers. To this, we executed few mod-
ification using the pre-trained weight while keeping the first
block and replaced subsequent blocks having max-pooling
with the discrete wavelet pooling.

As low-level features such as curves, color, edges and
texture are extracted from the first block, thus high-level
properties are extracted as the network goes deeper. How-
ever, the fundamental goal is to replaced max-pooling with
DWT pooling to reduce the loss of spatial details. In this
study, after the feature extraction stage, we discarded the 3
fully connected layers in the pre-trained VGG 19, thus hav-
ing the last block layer with 14 × 14 × 512 feature vector
as output. For dimensionality match, this last block layer is
connected to the primary capsule layer of the capsule net-
work using a 14 × 14× convolutional layer with kernel size
of 256 and stride of 3 represented as f1 in Fig. 2.

Loss of spatial information is one of the causes for CNN’s
low classification efficiency. To properly identify and cat-
egorize bearing defects, we suggested a Modified Wavelet
Convolutional Capsule Network (MWCCN). Capsule net-
work for categorization problems was first proposed by the
authors in [43]. Unlike standard CNNs, a capsule network
consists of capsules of vectorial entities. A capsule is a group
of neurons that are arranged in a vectorial pattern [44]. The
starting parameters of a capsule represent a specific class of
entity, and also the length of the capsule indicates the chances
that the entity exists. Capsule networks outperform regular
CNN in obtaining intrinsic and differentiating features of
entities [43]–[45].

Fig. 2 Detailed structure of our proposed modified wavelet convolutional capsule network (MWCCN)
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To attain excellent fault detection and classification effi-
ciency, we adapt the original capsule model and fine-tuned
the network by including a pre-trained VGG-19 framework
to extract features in order to develop a deep convolutional
capsule framework. Figure 2 shows a concise representation
of the proposed wavelet convolutional capsule framework.
Low-level attributes of the scalograms such as curves, color,
edges, and texture are obtained from the few convolutional
layers at the beginning stage of the network while the high-
level attributes are obtained as the convolutional layers grow
deep.To improve the classificationperformance andmaintain
the integrity of high-level features, we implemented a pool-
ing operation called the discrete wavelet transform (DWT)
pooling to achieve down-sampling. This minimizes the loss
of spatial information and allows for dimension reduction.
After extracting the features from the CNN framework, the
features are passed to another convolutional layer to achieve
a match in dimension before reshaping the features into pri-
mary capsules. Routing by agreement is applied to map the
features between the primary and digit capsules. As shown
in equation (9), the total input in the capsule layers consists
of sum total of the weights of all predictions obtained from
the capsules within the capsule network.

C j =
∑

i

ai j . Uj/i (9)

WhereC j depicts the entire input to capsule j . ai j is the cou-
pling coefficient which indicates the level to which capsule
i ignites capsule j . Uj/i is the prediction of capsule j from
capsule i as illustrated in (10).

Uj/i = Wi j . Ui (10)

Wi j represents the network weight mapping capsule i to j
whereas Ui represents the output of capsule i . A routing by
agreement algorithm decides the coefficient between the pri-
mary and digital capsules summing to 1 [43]. This routing
approach takes into account both the length and represen-
tation parameters of the capsule and when igniting another
capsule whereas in conventional CNN a framework depends
on the evaluated probability. In a nutshell, capsule networks
have a better dependency and capability of abstracting dis-
tinct inherent features. It’s worth noting that the capsule’s
length is utilized to assess the possibility of the existence of an
entity. For a perfect probability prediction, a non-linear acti-
vation function called squashing function is applied, where
capsules with short vectors are marked as low probability
and that of long vectors are marked as high probability, while
retaining a fixed orientation. (11) gives the squashing func-
tion formula.

Uj = ||C j ||2
1 + ||C j ||2 .

C j

||C j || (11)

The high-level entity abstraction is further passed into the
2 fully connected layers, and then a Softmax classifier is
used for the classification task. For a successfully training the
capsule network for classification tasks, margin loss [43] is
applied. Equation (12) defines the margin loss, Lk for classk.

Lk =Tk . max(0,m+ − Uk)
2

+ η(1 − Tk) . max(0,Uk − m−)2
(12)

In the Softmax layer, Uk is represented as the output of
the capsule. If the training sample is an instance of class k,
then Tk is set to 1 , else, Tk is set to 0. m+ is set to 0.9 and m-
is set to 0.1 which represent the lower and upper bounds for
the probability of a training data becoming or not becoming
an instance of class k respectively.n is the weight regularizer
which is by default set to 0.5. The total loss of the capsule
network is the summation of all digit capsule losses.

The ProposedModifiedWavelet Convolutional
capsule Network with MESRGAN+
(MWCCN-MESRGAN+)

Our proposed MWCCN-MESRGAN+ is an integrated super
resolution GAN and wavelet convolutional capsule network
for diagnosing rolling bearing fault as presented in Fig. 3.
The proposed architecture consists of the super resolution
part which handles the image enhancement by reconstructing
high-resolution images from low-resolution image counter-
part as the first stage while the second part is the wavelet
convolutional capsule network which extracts and learns
high dimensional feature vectors from the super resolu-
tion imagery generated by the super resolution network for
fault diagnosis and classification. We adopted some evalua-
tion metrics such as receiver operating characteristic (ROC),
accuracy (ACC), sensitivity, specificity (SPE), and preci-
sion (PRE). Details of the dataset utilized in the paper are
described in Sect. Experiments .

Constructing the time-frequency scalograms

Convolutional neural network processes images in either 2D
grayscale or RGB. To this end, the raw fault signals are
converted to time-frequency scalograms of 2D images with
abundant fault features usingCWT.This paper adopts cmor3-
3 wavelet for CWT due to its excellent ability to analyze
time-frequency. The raw signals are collected at each sample
point of 1024 in time series and CWT is also executed at the
same time series.
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Fig. 3 The proposed modified wavelet convolutional capsule network with modified enhanced super resolution generative adversarial network plus
(MWCNN-MESRGAN+)

Experiments

Experimental Setup and Details

We built our proposed model using the famous rolling bear-
ing dataset ofCWRU[38]. The vibration signal of the bearing
motor is collected using acceleration sensor. The bearing
dataset collection is structured as normal, drive end fault with
sampling frequency of 12 kHz and 48 kHz and fan end fault
with sampling frequency of 12 kHz. The drive end defect
with 12 kHz frequency is utilized in this paper. This data
was measured under different load conditions (0, 1, 2, and 3
hp) as a single point fault due to electro-discharge machine.
It is partitioned into ball fault (BF), inner fault (IF), outer
fault (OF) with different fault diameters (0.007, 0.0014, and
0.0021 inches). Besides, the outer race of the dataset con-
sists of 3 damage points which are 3 o’clock, 6 o’clock, and

12 o’clock. The dataset consists of 10 health conditions for
which the 9 conditions (BF-7, BF-14, BF-21, IF-7, IF-14,
IF-21, OF-7, OF-14, OF-21) belong to the fault label and 1
condition belongs to the normal label (N).

This paper adopts the damage point of 6 o’clock and the
load condition of 0 hp to build the data split for our proposed
model. Since there are 10 conditions with 1024 signal sam-
pling points, we randomly select 400 samples to build the
training set and 200 samples to build the testing set for each
condition which will eventually amount to a total of 4000
training set and 2000 testing set. Additionally, a validation
set is constructed from 25% of the training set which bring
the training set to 3000 samples and 1000 samples for the val-
idation set. Since the proposed model requires that the input
data must be a 2D image with three channels (RGB), we
adopted CWT to convert the raw signal into time-frequency
scalograms (2D images) and reshaped the input dimension
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to 224× 224× 3. It is important to mention that Adam opti-
mizer and the learning rate of 0.0002 are used with a batch
size of 16 and 30 epochs during the training of our model
and the number of class label in the dataset correspond to
10. We implement our proposed model on Keras framework
with Tensorflow as backend using NVIDIA GTX 1080 GPU
work station.

Evaluation

This section presents the results of our study in two parts;
the first part presents the evaluation of our proposed mod-
ified super resolution GAN plus network in terms of peak
signal to noise ratio(PSNR) and Perceptual Index (PI). The
second part involves evaluating the fault diagnosis per-
formance of our proposed wavelet convolutional capsule
network (MWCCN).Wemade few comparisonwith state-of-
the-art models including some selected pre-trained models.
The evaluation criterion adopted as the metric to evaluate the
diagnosis performance of our proposed MWCCN is as fol-
lows: accuracy (ACC), precision (PRE), sensitivity (SEN),
specificity (SPE), area under curve (AUC) and F1-Score.

F1 = 2 × Precision × Recall

Precision + Recall
(13)

Accuracy = T P + T N

T P + T N + FP + FN
(14)

Sensi tivi t y = T P

T P + FN
(15)

Speci f ici t y = T N

T N + FP
(16)

where T P , FP , and FN indicates the outcomes of true pos-
itive, false positive, and false negative, respectively.

MSRGAN+ Evaluation

Table 1 illustrations the efficacy of our proposed MESR-
GAN+ model in terms of PSNR and PI as well as the
transition of SRGAN to MESRGAN+ in comparison with

other well-known methods. The MESRGAN+ generates
more suitable images, eliminates unimportant details and
artifacts, and enhances extracting feature visibility. The time-
frequency scalograms are fed into the proposedMESRGAN+
for low quality enhancement and achieving high-resolution
(HR) by up-scaling with a factor of 4.The HR images created
by the MESRGAN+ preserve abundant fault features while
discriminating against distracting backgrounds.

The results of the CWT conversion of raw signals to
scalograms are presented in Fig. 4 (load condition = 0 hp).
According to Fig. 4, the fault types that correspond to the
raw time domain signals is difficult to distinguish. However,
CWTmakes it easy to distinguish the differences between the
time-frequency scalogram of individual fault category which
makes it suitable for our proposed MESRGAN+ to extract
abundant features for image regeneration.More so, Fig. 5
shows the performance of our proposed super-resolution,
MESRGAN+ and other state-of-the-art models which are
SRGAN, ESRGAN and ESRGAN+. For fair comparison,
we employed their source codes available online with the
same CWRU dataset. One of the aims of this research is
to check the PSNR and perceptual index (PI) of the super-
resolution models in which our model gives the bet results in
both cases.MESRGAN+producesmore appropriate images,
removes artifacts, and improves extracting features clarity by
extending the convolutional layer of the generative structure
of the residual block and removing batch normalization.

Fault diagnosis evaluation of MWCCN

Results

The accuracy and loss curves of our proposed MWCCN-
MESRGAN+ are presented in Figs. 6 and 7. We observed
that after 10 epochs, the training and validation curves started
converging with smooth stability depicting efficacy of the
model. More so, the diagnostic accuracy of the model is
achieved using the trained model to classify the testing
dataset. To ensure the stability of our proposed model, the
work was repeated for 7 times under same condition and the

Table 1 Comparison of the structural configuration of SRGAN, ESRGAN, ESRGAN+ and our proposed MESRGAN+ including their reported
PSNR and Perceptual Index using data-class A

Parameter SRGAN ESRGAN ESRGAN+ MESRGAN+

Residual block of
the generator

Conv (3,64,1) Batch norm
ReLU Conv(3,64,1) Batch
norm

Conv (3,64,1) ReLU Conv
(3,64,1)

Conv (3,64,1) ReLU Conv
(3,64,1)

Conv (3,64,1) ReLU Conv
(1,64,1) ReLU Conv
(3,64,1) ReLU Conv
(3,64,1)

Input size LR LR LR LR

PSNR 19.34 dB 19.17dB 18.56 dB 18.36 dB

Perceptual index 2.87 2.61 2.24 2.18
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Fig. 4 The construction of time-frequency scalograms under 0 hp load
condition using CWT

Fig. 5 Super-resolution results of our modified version of ESRGAN+
in comparison with state-of-the-art models. The PI score is shown on
the left while the PSNR score is shown on the right

accuracy, sensitivity, specificity, and precision presented in
Table 2.As presented inTable 2, the proposedmodel obtained
99.92%accuracy, 99.78%sensitivity, 99.69%specificity, and
100% precision for the first category of sub-data class under
the load condition of 0 hp indicating the model’s robustness
in fault diagnosis.

Ablation study

Model tweaking

For the purpose of understanding the influence of super res-
olution approach and discrete wavelet pooling on image

Fig. 6 The accuracy curve of the proposed MWCCN-MESRGAN+
using the data-class A category

Fig. 7 The loss curve of the proposed MWCCN-MESRGAN+ using
the data-class A category

quality enhancement and the performance of the proposed
MWCCN-MESRGAN+ model, we conducted some experi-
ment by making some structural adjustment to our proposed
MWCCN-MESRGAN+model as shown in Table 3. The four
different models are trained on the first category of sub-data
class called data-class A and the training epochs is set to 30.

All training parameters are kept the same and the training
time for each models to complete one epoch is recorded and
the results are given in Table 4. We observed that the time
required for the proposed MWCCN-MESRGAN+ model to
train for one epoch is 9s, 16s, and 20s longer than the other
models as shown in Fig. 8. This is a clear indication that more
parameters more training time. More to the point, MWCCN-
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Table 2 The result of our proposed MWCCN-MESRGAN+ on the
data-class A

Data-class ACC (%) SEN (%) SPE (%) PRE (%) Computational
time (s)

A 99.92 99.78 99.69 100 2,790

Table 3 The result of the experiments conducted by adjusting the struc-
tural parameters of our proposed model on data-class A

Model ACC (%) SEN (%) SPE (%) PRE (%)

MWCCN-
MESRGAN+
(Proposed)

99.92 99.78 99.69 100

MWCCN
(max-pool)-
MESRGAN+

98.04 98.11 97.98 98.32

MWCCN (DWT) 97.71 98.34 98.85 98.92

MWCCN
(max-pool)

96.58 97.78 97.96 98.43

MESRGAN+ converges fast with higher accuracy and lower
loss despite the long training time.

Investigating dataset generalization. NC stands for normal
condition. LC stands for load condition. HC stands forHealth
condition

Most deep learning models utilize max-pooling layers to
perform down-sampling operation to reduce the dimension-
ality of the feature vector but this process usually lead to
loss in spatial features although the computational time is
reduced. We know that capsule network has a longer train-
ing time due to the size of its feature dimension, however,
it maintains the integrity of its high-level feature without
loss of spatial feature which gives capsule-based network the
competitive advantage over traditional convolutional neural
networks to learn specific features from the dataset result-
ing to higher accuracy and fast convergence as a trade-off
between computational time and accuracy. It is worth men-
tioning that our proposed MWCCN-MESRGAN+ model
achieves nearly 100% diagnosis accuracy without overfitting
on small dataset.

Investigation of dataset generalization

To further investigate the generalization of our proposed
MWCCN-MESRGAN+ model as presented in Table 4, we
constructed several categories of sub-data class under differ-
ent load conditions as follows;
Data-class B 400 samples are selected randomly under the
load condition of 1hp for individual health condition as the
training set, and 200 samples are selected randomly under the
same load condition for the testing set. For the 10 conditions,

Fig. 8 The average training time for the different models constructed
from adjusting the proposed MWCCN-MESRGAN+. This computa-
tional time is recorded for one complete epoch using the data-class A
category

the total training samples and testing samples are 4000 and
2000 respectively.
Data-class C 400 samples are selected randomly under the
load condition of 2hp for individual health condition as the
training set, and 200 samples are selected randomly under the
same load condition for the testing set. For the 10 conditions,
the total training samples and testing samples are 4000 and
2000 respectively.
Data-class D 400 samples are selected randomly under the
load condition of 3hp for individual health condition as the
training set, and 200 samples are selected randomly under the
same load condition for the testing set. For the 10 conditions,
the total training samples and testing samples are 4000 and
2000 respectively.
Data-class E 200 samples are selected randomly under the
load condition of (0 and 1 hp) for individual health condition
as the training set, and 100 samples are selected randomly
under the same load condition for the testing set. For the 10
conditions, the total training samples and testing samples are
4000 and 2000 respectively.
Data-class F 150 samples are selected randomly under the
load condition of (0, 1, and 2 hp) for individual health condi-
tion as the training set, and 80 samples are selected randomly
under the same load condition for the testing set. For the 10
conditions, the total training samples and testing samples are
4500 and 2400 respectively.
Data-class G 100 samples are selected randomly under the
load condition of (0, 1, 2, and 3 hp) for individual health
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Table 5 The results of MWCCN-MESRGAN+ model under different
load conditions for the rolling bearing dataset

Data-class ACC (%) SEN (%) SPE (%) PRE (%)

B 99.92 99.78 99.69 100

C 99.04 99.11 99.98 99.98

D 99.71 99.34 99.85 100

E 99.85 99.78 99.96 99.97

F 99.58 99.86 99.97 100

G 99.67 99.89 99.89 99.99

H 99.91 99.85 99.95 100

condition as the training set, and 50 samples are selected
randomly under the same load condition for the testing set.
For the 10 conditions, the total training samples and testing
samples are 4000 and 2000 respectively.
Data-class H 100 samples are selected randomly under the
load condition of (0 and 1 hp) for individual health condition
as the training set, and 200 samples are selected randomly
under the load condition of 2hp for the testing set. For the
10 conditions, the total training samples and testing samples
are 4000 and 2000 respectively.

Additionally, 25% split of the training set for each data-
class category above is utilized to build the validation dataset
during training. the proposed model is used to train the data-
class B - H. The training parameters and conditions are
kept the same as the previous data-class A. The proposed
MWCCN-MESRGAN+ is trained for 7 times repeatedly and
the experimental outcome is presented in Table 5. Damage
point of 6 o’clock is utilized for all data-class categories.
The results indicates that our proposed model relatively
achieved nearly 100% across the different categories of
data-class.

It is worth mentioning that The proposed MWCCN-
MESRGAN+ achieves excellent diagnosis accuracy fault
data under different load conditions. The data-class H is a
special construction to test the validation of our proposed
MWCCN-MESRGAN+ by introducing a new load condition
from 2 hp as the model is trained on the load condition (0,
1 hp). However, the model still classified the bearing faults
which indicates that our proposed MWCCN-MESRGAN+
model is robust and generalizes very well.

Comparison with other MWCCN (Inception V3, EfficientNet)
Models

Our proposed MWCCN in this paper is constructed using
VGG-19 as the base model. To examine the efficacy of
MWCCN (VGG-19), We compared the model with other
MWCCN(Inception V3 and EfficientNet) models. We only
fine-tuned the last layer of the pre-trained models by replac-
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Fig. 9 The average training time for the differentMWCCNmodels. On
one hand, MWCCN is modified using Inception V3 as the base model.
on the other hand, EfficientNet is used as the base model. We compared
these two modifications with our proposed model with VGG-19 as the
base model

Fig. 10 The accuracy curves of the various MWCCN models on data-
class A category

ing the neurons in the Softmax layer to correspond to the
number of class label in our dataset which in our case is 10
neurons. The different versions of the constructed MWCCN
models including our proposed model are trained on the first
sub-dataset category, data-class A. The computational time
for training one epoch by the three models are presented in
Fig. 9.

Figure 10 shows the accuracy graph for both the training
and validation dataset for the individual MWCCN model.
We observed that MWCCN (Inception V3), MWCCN (Effi-
cientNet) and MWCCN (VGG-19) requires approximately
the same training time to complete one epoch but MWCCN
(VGG-19) converges faster. In a bid to further ascertain the
excellent performance of our proposedMWCCN (VGG-19),
we conducted another experiment on all the categories of the
sub-dataset (Data-class A-H). Table 6 depicts that MWCCN
(VGG-19) achieves excellent diagnosis performance across
the sub-datasets depicting that MWCCN (VGG-19) gener-
alizes better than MWCCN (Inception V3) and MWCCN
(EfficientNet).

Comparison with other fault diagnosis methods

In the course of our work, we reviewed several literature
related to fault diagnosis based on artificial intelligence and
presented some comparison. Some literature reported few
performance indicators to support their claims as seen in
Table 7. More to the point, our proposed model achieves
better performance with more indictors reported compared
to the other fault diagnosis methods cited from literature. the
proposed MWCCN-MESRGAN+ model is compared with
other fault diagnosis methods.

The authors in [44] proposed awavelet basedmulti-fractal
feature learning approachwith SVMclassifier. The authors in
[45] adopted the method of ELM to diagnose bearing faults.
An interesting work was proposed in [46] which is based
on SVM and EEMD for fault diagnosis. The authors in [47]
integrated wavelet into auto-encoder learning and combined
the framework with ELM to diagnose faults. The authors
in [48] suggested a solution to the problem of hierarchical
recognition inmachinebyusingDBNtodiagnose fault.Quite

Table 6 The comparison of MWCCN models under different load condition

MWCCN model Data-class A Data-class B Data-class C Data-class D Data-class E Data-class F Data-class G Data-class H
ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

Inception V3 99.76 99.58 98.97 99.63 99.61 99.32 99.49 99.76

EfficientNetl 99.84 99.47 98.82 99.69 99.74 99.46 99.51 99.87

VGG-19 99.92 99.65 99.04 99.71 99.85 99.58 99.67 99.91
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an interestingwork of DNNwith SSAEwas suggested by the
authors in [49] for the diagnosis of fault.

The authors in [26] utilized 2D and CNN for the diagnosis
of bearing faults. Random forest learningwith CNNwas sug-
gested by the authors in [50] to diagnose faults. We observed
that our proposedmethod is superior to conventionalmachine
learning approach and other fault diagnosis model. Com-
pared with the methods suggested by the authors in [44] and
[45], our proposed MWCCN-MESRGAN+ model showed a
significant improvement by a large margin. Compared with
the other methods including the deep learning model, our
proposed model significantly outweighs all of the models.
Compared to the method in [50] under the data-class F, the
accuracy of our method increased by 0.5% showing that our
model generalizes very well.

The experimental results show that our proposed archi-
tecture outweighs other fault diagnosis models and some
selected deep learningmodels. For fairness,we selected some
deep learning models and implemented them based on their
source code using the same data-class A. From the exper-
imental analysis of our comparative report as presented in
Table 8. MobileNet V2 achieves the least sensitivity score of
93.6% whereas ResNet50 obtains the least specificity score
of 92.5% as depicted in Table 8. From all indications, our
proposed model outweighs all the pre-trained models with
a high sensitivity score of 99.78% and 99.69% specificity
score. Another important metric is the Receiver Operating
Characteristics (ROC) curve. The ROC curve measures the
overall accuracy in terms of AUC as shown in Fig. 11. Fig.
11 shows that our model demonstrates a satisfactory balance
between sensitivity and specificity by minimizing the error
rate of the false positive and maximizing the true positive
rate.

More so, the accuracy performance of the pre-trained
models is reported in comparison with our proposed model
as presented in Table 8. Our model performs better than the
pre-trainedmodels, achieving a high accuracy of 99.92%.We
also show that our proposed model convergences smoothly
and steadily with a moderate reduction in loss.

Conclusion

In this work, we proposed a GAN-based super-resolution
with wavelet convolutional capsule framework for fault diag-
nosis and classificationwith the aimof handling the challenge
of low-quality characteristics of scalograms obtained from
raw fault signals by using continuous wavelet transform
(CWT). In summary of the contribution of this work, CWT is
used to convert the raw fault signals into 2D time-frequency
scalograms compatible for 2D CNN operation. The 2D time-
frequency images (scalograms) are reshaped to 224×224×3
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Table 8 Comparison results of
our proposed model with
selected transfer learning
models on data-class A

Model ACC (%) SEN (%) SPE (%) PRE (%)

MWCCN-MESRGAN+ (Proposed) 99.92 99.78 99.69 100

MobileNet-V2 94.71 93.60 94.28 96.72

ResNet-50 95.02 94.72 92.50 95.82

DenseNet-121 94.98 95.68 93.87 96.43

Xception 96.56 96.82 95.62 97.66

Fig. 11 The ROC curves of the various MWCCNmodels on data-class
A category

RGB format as input to the GAN-based super resolution net-
work for quality enhancement.

The reconstructed high-resolution images become the new
input images to the wavelet convolutional capsule network
for fault diagnosis and classification. More so, the pro-
posed MWCCN-MESRGAN+ model is validated with the
famous rolling bearing fault dataset from CWRU achiev-
ing 99% accuracy, 99% specificity, 99% sensitivity and
100% precision which outweighs the other fault diagnosis
methods including some deep learning models. We carried
out ablation study to evaluate the generalization perfor-
mance of our proposed model and by a well-observed
margin, the results demonstrate that our proposedMWCCN-
MESRGAN+ model achieved excellent fault diagnosis per-
formance.

Even though this study has a high level of accuracy in clas-
sifying fault, it does have certain drawbacks. This suggested
strategy, which has high classification accuracy in CWRS
dataset, might not obtain exactly the same classification
accuracy in imbalanced fault dataset. The reason is because
the class labels may consist of imbalanced data samples
owing to differences in labeling. To solve this challenge, AI

model should be trained utilizing imbalanced class label data
acquired at various times and locations. Aside the diversity of
data, the allocation of the data classes is also significant. The
disparity in class sizes has a detrimental impact on training.
The accuracy of classification is also affected by the different
data augmentation strategies employed to correct the imbal-
ance. In light of this constraint, study will be conducted in
our future work employing a wider range of imbalance class
data and possibly employing various optimization strategies
that are more efficient in terms of computation time.
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